L ogic control implementation from a process view

Ir Henk van Heuh

Abstract. State transition diagrams with additional timingncbe used to
represent the states of a physical process in axeél manner. These state
diagrams are used to be the kernel of a logic obirtrplementation. For a safe
and reliable control it is not necessary to prowat tthe control program is
correctly connected to its physical process atimiés. In fact, when assuming
that the information from the physical processaslty or delayed, it is very
likely some error condition will always arise.

This paper is about an implementation techniquaguiie proper instruction
order to prevent the huge numbers in combinatqriadsibilities and staying
close to the physical process when representinghi¢ resulting program is
running on the highest speed possible and fulldiptable.

Keywords: Logic control, hybrid control, state diagram impkmtation.

1 Introduction

History: In process automation some traditional fields xfbestise exist. These
fields of expertise show a parallel evolution wille development of the hardware
components used to control a process.

Half a century ago the logic control was based elays. Relays are working in
parallel, so decision time depends on the slowedayr The invention of the transistor
led to the solid state logic of the first chipstlie late sixties. Karnaugh diagrams, or
the similar Quine-McCluskey [1,2] table based aipon, were used to minimize the
logic. The decision speed of this logic is relatethie number of layers (=2).

The automobile industry, with General Motors in trotkeveloped the PLACThe
logic control was brought into a programmable emvinent for flexibility in adapting
the control when the process was changed. TheseRatl programs were based on
replacing the relay logic. Adding simple arithmeéind some analogue inputs and
outputs was the next logical step. But handlingBloelean expressions seems to be
unchanged. A PLC program is now a serial list ofringions and the decision speed
of the complete program depends on the numberstriictions.

The evolution in control logic programming is drivey the desire of creating
reusable functions to enable quick developmentd)goroven design” functions has

1 Central Engineering Department NEM BV, Holland. Bmaivheun@nem-hengelo.nl
Industrial automation and software engineering.
2 PLC= Programmable Logic Controller, an industriahpaiter to perform the control.

become the trend. Although these “standard” compisnean be correct working
pieces of art, the interconnections are responsdslehe (lack of) reliability of the
total system. Time for a fresh approach | think.

1.1 Problem

“Standard” implementations are based on /O (=If@utput) related building
blocks. Designing a logic control by connectingsianultifunctional components
leads to scattered process representations hidudemany Boolean expressions.
Proving that the implementation is satisfying aclional specification is postponed
until the commissioning phase or remains an unpretatement on paper.

Problem 1: In Fig. 1 shows such a “standard” building blockpressed in a
graphical manner:

1

gl

=

PROT[PERM[MAN [AUT [MAN [AUT [PROTPERM[MAN | AUT
CLOSE OPEN

[

STATUS
CLOS] FAL [OPEN|

Fig. 1. Building block for a single valve.

This simple example shows the problem. A single Baol output needs 10
Boolean parameter expressions. See appendix Afexplanation of this symbol.

The integration of manual and automatic commandsoiged by this standard
building block, but at the cost of multiple paraerst This block contains more than
one memory (I counted 7!) and timers due to thatefyy of responding to the last
command and being able to survive transitionalegaysing this standard block, the
operator interface is now a standard function é®me “faceplate” can be shown on
the screen and all alarms, signals and operatomaonds are neatly structured.

But when using these building blocks, the procesfoigotten. The focus is on
making flexible and reliable (single) outputs wétlstandard operator interface.

However it is normal to control multiple valves apdmps for a process. Like a
“block and bleed” for a gas fuel system: three galfunctionally tied together, no
need for a single valve to be operated manuallyawuit operating the others. The
standard building block is out of order here.

By using this standard approach, the decision speedreliability of the total
system is degrading. The standard building blodikesosome important issues, but
creates problems also.

Problem 2: Another example of the problem is found in themalr standard
sequence logic which can be implemented by usinges8FC language symbols in
the PLC. Sequence logic is equivalent to prematiate sliagrams and can be used to
express a Start/Stop-sequence by some organizingpatent and a sequence of
steps. The next picture is copied from the ABB Pnticd manu& to document the
Boolean behavior of a single step. Every DSC ogdarPLC system is offering
symbols with comparable functionality. This is ad ahd therefore simple example:

Funktions —Blockschaltbild

NRA WSB UEB

" EinAus. ‘
Programm ist
Ein (EE, EA} ‘

»—.—» SMZ
. Zeltiberw. abgelaufen ‘

=S Ricksetzen Schublr.n—1
| aB
son [a] [
N = ‘
=) S S

——— nurbei letztem Schritt von Ein- und Aus—Programm

Fig. 2. ABB Procontrol example of a single “Step” function.

Some remarks about this logic to show the natuthefproblem: Note that a Set-
Reset memory is used to implement the active swftubkis “step”. When the total
sequence exists of 9 steps, 9 memories are imptecheA total of 2 combinations
emerge, so the surrounding Boolean expressionses@ed to reduce that number to
the functional 9 again. Note also that each stepdmassociated timer and only a
single timer is active.

My biggest problem is not the overkill on instraets. But it is obvious that it will
take at least 2 program cycles to make a propesitian (due to upstream and
downstream connections). The designer of this lagis aware of that and combined
the “state search” (UEB = Uberlauf) with the prelide transition (WSB of the next
step becomes True) to suppress the output signgd A intended to give the AUT-
Open command to the valve of Fig. 1.) During traoss the definition of the “step-
active” is vague and therefore not suited to beluseeombinatorial expressions. The
only proper use is to connect them to the next dtép easy to see that a single shot
WSB (True for only one program cycle) can corruji thgic.

When making Boolean expressions, the implicit assiomps always to combine
variables representing their values at the same entonNewtons law: (F=m.a) implies
likewise that the mass and acceleration are valitleasame moment. It makes no sense
to calculate the present force using the masssofylsar and multiply it by the predicted
acceleration of tomorrow.

3 SFC=Sequential Flow Chart. One of the five IEC-1834tandard PLC languages. Like
Graphcet.
4 Druckschrift-Nr. D KWL 6311 96 D, Ausgabe 02/96BB Procontrol P manual.

The decision speed of a sequence program likedtds least two program cycles.
This degrades the predictability. When proving tterectness of this type of
program, all intermediate and implicit memories hhesanalyzed.

1.2 Solution

The solution is not complicated:
» The process representation should be made expiitransparent.
* The intrinsic implementation technique of the logientrol should be
proven correct to obtain reliability and predictpi

Philosophical remark: When proving the correctness of a system, the palsi
process and its control are normally seen as desisygstem. For logic control |
disagree to do so, because the transparency girteess representation becomes
cloudy. After reading “Laws of Form” [3] from Geord&gpencer Browh | realized
that making a distinction between the physical psscand its representation has deep
consequences. The representation only highlightseairdicts some symbols from
reality. The representation is therefore not stricttnnected to the reality. And as
Spencer Brown argued: when making a distinction, 3@ dealing with three objects:
Two distinct areas and a border.

Qper at or

Process
Qntrol

I nput s Qut put s

Physi cal
pr ocess

Fig. 3. System decomposition: Operator + Process ContrdiysiPal process

Using techniques from the Operational Researchptonize a system does not
address this fundamental issue. When a systermisotled, the physical process and
its control are separate worlds, connected throsmine border. This border will
transfer only a selection of information and intwod delays and errors. Control logic
design should handle this. Fig. 3 shows the sepavatlds. The Inputs and Outputs
form the border and you could include an operatotop also.

Designing a control: When building a logic control, the key questionsinie:
How do we represent the physical process?

The most important task of the logic control is ®ejg track with that physical
process. Of course the Inputs are indicating thaxg®s state, but Inputs are not
always error free. You need to decide when an lopatbe used and when it must be
ignored. If the process is represented by a stagrain, the actual state (not the

5 He was familiar with control logic. He even holpatent for a Lift Control System in 1963.

process itself, but its representation) is theqmrieans to define the usefulness of
an Input. When using the process view as a fundthapproach, the state transition
diagram comes naturally. How | define (and implethench state transition diagram
will be explained in great detail in this paper.

The answer to the key question has two compondmsiepresentation itself (the
states) and how it keeps track in time (transitiand timing). My implementation
technique deals with both.

Nasty property propagation: The state diagrams are a direct representatioheof t
processes to be controlled. The Inputs are usedéntransition expressions to
establish the actual state and the Outputs arel lmasthe states.

Outputs are therefomo direct functions of Inputs!

When building Boolean expressions for Outputs usiogne memories and Inputs
mixed with commands, all nasty properties of fadftyuts will be transferred to the
Outputs immediately. The state diagram absorbs disg/rproperties and the Outputs
solely based on the states are error free again.pidper synchronization with the
physical process is the first and only task fordtate diagram implementation.

In your body an immune system is effectively actateall borders. All attacks of
foreign bodies, all nasty properties of the food dealt with. Its goal is to isolate the
problems. And after this effective filter your hiegl body can react in the real world
according to its functionality. Your muscles reaitectly on the commands of your
brain, no checking of the fuel or doubting the ccanats found here.

The implementation technique of state diagrams iy iraportant, the reliability
depends on it. When the implementation is pushedyainto some “standard”
components, the basic condition for a reliable @rnis absent. Randomly joining
components is not a good engineering practice. t$taleding the nature of a process,
and adjusting the implementation accordingly, is.

Implementing the solution: The next chapter shows how a single executiomef t
serial list of instructions takes all decisions. Timeplementation is based on
clustering the instructions, using global data @andedundant representation. The
resultingsingle cycle decision principle creates reliable and predictable logic control.

Clustering instructions into categories and bewgra of the cluster order is one
of the applied rules. Appendix B explains the @usig details.

In this paper the solution is demonstrated withesample using my HCADwin
tool. Appendix C explains some background of thit BLC and simulation program.
The example implementation is described in greatidetappendix D to demonstrate
the implementation technique.

Timing: The “relaxed or elastic synchronization” betweeatestdiagram and the
physical process is a given fact. Inputs can baydel or faulty, so it is a reality that
the control logic will be misinformed at some mormeriHere the timing
implementation (using a single timer) of the sw@itgram comes into action. It only
matters that the order of states is predictablethatisynchronizing is realized in the
long run. Starvation (=infinite waiting for somermttion we know that will never
happen if some Input fails) is solved by the tiipe parameter. The timing function
sets a single ESD Boolean which can be used o' ttne process.

A state diagram should have one or more “trip” estatvhen the corresponding
physical process is to be controlled and direatettiése safe positions.

These trips are the ultimate means to synchronize the phygioadess and the
state diagram again. It could be done by some tresenmand from an operator
also. And the trips provide a solution for “deadfb@nd “starvation” situations
caused by unexpected failures of the Inputs. Cendlike trip logic as an additional
safety barrier. It is good engineering practicecteate multiple barriers. Creating
fully integrated and optimal solutions is often eailent to creating problems.

Making a state diagram using this timing featurloved you to minimize the
number of disjunctive states and keeping the ttiamséxpressions simple as well. No
thoughts have to be spent on complex combinataitalations. Assigning and
defining the Outputs is purely based on ORing #levant states. By definition this
state context is correct.

The timing parameters for each state can be opltjonaéd (see appendix E). The
combination of Inputs, ignored in all but relevatdtes, and the state diagram timing
offers the transitions to the trip states for u#ttensynchronization.

1.3 Safety aspects

When creating complex systems, one should at teast about the correctness.
Model checking is one way of discovering flaws lire design. But in real systems it
does not always matter if some, minor or major flewists. Availability, reliability
and predictability are more important.

When living in the woods and the TV shows a nedifgy you will hate your car
when it refuses to start because of some failidgdtight. You would even accept a
square wheel if it would lead you out of the dangeme. The correct deduction that
the “car system” is not healthy is not always ihgtortant.

A control system based on independent working martsignoring or dealing with
faulty information can be very reliable and in ifggoven correct.

Realize that only two categories of errors exdistwn and unknown. The latter can
not be blamed to be forgotten by an implementaw to treat the first category alike
and ignore them also. But the attitude is to inocaife all deviations naturally.

Functional specification: In the industry the functional specification istef
expressed in “narratives”, short stories expresstiegpurpose of a process, how to
start and stop it and how to deal with some dexiati The safety aspect can be
specified in a “cause and effect matrix”, linkingriain process conditions to forced
output patterns. This is the design perspective proeess, ignoring the complexity
and flexibility from a more dynamic perspective. $adunctional specifications will
not lead automatically to a proper implementatibthe total control.

Using state diagrams with trip states is combinafigaspects of the functional
specification in a transparent fashion.

6 Trip is the industrial term for the ESD (Emerger®iyut Down) procedure for reaching a safe
state in the quickest way possible.

Control correctness: | assume that the machine (like a PLC) executiregcontrol
is working perfectly. It executes my serial list iofstructions without any errors.
When this machine is expected to fail, some aduitidhvardware is added to assure
safety. Like safety valves to be opened by a higisqure of the medium, or forced
valve positions at power failure conditions. Theidogontrol is implemented solely
by means of state diagrams. For hybrid controlstage diagrams are determining the
context for the analogue controls. The controbisect when all states are checked.

Model checking theories like thiamed automata [4] often assume a single system.
By defining a complex system as the product of comenmt systems, every system
can be seen as a single system. The physical precessts control are joined
together in a single system as well. | reject this due to the faulty interface of
inputs and the infinite number of events in the gitgl process. At least the control
and the physical process must be separately déhlffov ignoring irrelevant events.
For model checking and proving phenomena like aekdbr starvation, this theory is
well equipped. It is an analyzing tool, but nottedito create a control.

2 Statediagram implementation

This paper defines a method to create a controldbaséwo important issues. The
first is the process representation within a cdieiroand the second is the set of
implementation rules to obtain reliability and prdbility.

The standardization of today forces designers ofrobprograms to use heavy
weight standard building blocks focused on handtimg I/O (Input/Output) like the
example in Fig. 1. These blocks are “structured” tfer general cases, forcing the
programmer to invent Boolean expressions to endibldile the options of these
standards. Within these Boolean expressions theepsorepresentation is hidden.
Why not start with the process perspective andesgit transparently and directly?

Technicians are tempted to (re)use proven buildlogks. And for a good reason
too. Sometimes the real problem can be addressestamdard components, but
connecting these components can be complex aratlirde timing issues.

Process representation and implementation rules: Creating a (hybrid) control is
finding the proper order of the serial list of insttions (implementing), based on the
correct representation of the physical process b@loadministration). The
implementation should avoid all additional memoriesmaximize the predictability
and minimize the combinatorial space.

Some philosopher once said that all systems arerfiegt when memories are
involved. | could not agree more.

This chapter contains the receipt of implementirggloper order in the serial list
of instructions. Without the proper order the decisspeed of the total program will
become a multiple of the cycle time and therefargoducing unwanted timing
problems and obscure memories. When decisionsntaktiple cycles, they are based
on a mix of actual and historical data, which id.daspection of the instructions will
not reveal that quickly.

The exact order of the instructions is not alwaypadrntant, but clustering the
instructions into functional entities with respéetthe state diagrams and keeping the
cluster order intact is a key issue.

Designing: The first step when implementing, is to understéme nature of the
physical process. Each parallel physical procesy {Riportant to represent, is given
a name (like PROC). Within the PLC it is a globatiable of that name holding an
integer. This variable is called the State Variat®/). Every process state is
numbered.

This is representing the process: physical statesrepresented by a number.
Assigning zero to the initial state when the systenin hibernate state, is good
practice. Using a limited number of states is gpoattice too. If over 99 states are
needed, some suspicion of bad design comes intd. Aistate diagram should fit on
a single page. This compactness is not a real derbah@hen informing a second or
third party it is crucial that it can be understaftbrtless. When shown on a screen
for an operator, he should see the complete diagransingle window.

A trivial, but always forgotten property of a vala holding a number, is the
impossibility to hold multiple numbers at the samement. States are expected to be
disjunctive so this “single number” property of t8¥ is used. By its very nature not
a single instruction is needed to remove the presvimumber. Implementations based
on separate state Booleans always need some coemkem set of instructions for
resetting old states. This corrupts the “singldegecision taking”, causing delays or
mysterious errors.

My implementation technique never creates wrongételogic:it is absent.

The next step in creating the control logic is innpdating the clusters of instructions.
The ultimate goal of these instructions is to ke@gk of the physical process. The
SV should reflect the state of the physical proc&sg it is not important that PP
equals SV at all times! In a relaxed manner theesmtation of the process should
follow or precede the physical process. For a bédiaontrol it is more important to
know that each program cycle only one state tramsican be made to fulfill the
internal criteria than knowing “PP equals SV”.

Now we define the implementation clusters in thebtative order, needed to
implement the state transition diagrams. Keep émearks of the clustering details in
appendix B in mind:

2.1 Preparation cluster

The first cluster of instructions in the serial istcreating some Boolean variables
to be used as transitions in the next clusters. CBjlyi the Inputs are used in these
straightforward Boolean expressions. Like compariegpressure against some
constant, or reading the status of a switch. Kngwirat a transition is used to leave
specific states will simplify the expression. Théuesof the expression is irrelevant in
all states not using that transition, use thatdoee to keep it simple.

2.2 Trip cluster (optional)

This cluster of instructions is creating the trignsitions. This is a special category
of transition Booleans. Typically some Input is canddl with an OR of the states in
which the trip transition can occur. By connectang Input like “Pressure too Low”
with states like “Almost active” or “Active” the seilting “Trip on low pressure”
signal can be used as an alarm at any moment.sidnsl will be used solely or in
combination with other trip signals as a transitiora trip state.

The naked “Pressure too Low” Input is likely tod&ery normal signal when the system
is “Sleeping”. Although the Input description cant&“too Low”, it is not true unless seen
from the “system running” perspective. This is anocoon mistake for many designers.
Descriptions are context sensitive. My trip sigreais a combination of the naked signal and
the proper context and therefore real alarm sigoaly True in the proper context.

2.3 Firgt failurecluster (optional)

This cluster uses the trip Booleans and normal Bifutlistinguish the first failure.
Although | am aware that the Input sampling meckaniof the PLC gives no
accurate insight in the exact timing of the eveittss good enough (and the best
available) for indicating the reason why a stategthm started some emergency
procedure. From the state diagram perspective Rhig Failure was the precise
reason to go to some trip state. It is importarigtmre all other alarms and signals, to
prevent the operator being overloaded with unnecgssformation.

A First failure alarm group is implemented as aeger variable. When zero, no failures
are present and the very first failure writes iteniver into this variable. All other failures
are ignored if the FirstFailure is non zero. A betate reset command (from an operator or
a state diagram) writes a zero to activate the RiestFailure capture.

The First Failure signals are often identical with trip signals. For that reason the
Trip cluster precedes this cluster.

2.4 Transtion cluster

This cluster contains the transition logic. Typigadl new number is conditionally
written into the state variable (SV).

{Pascal exanple} If PROC3 And Transition5 Then PRCC. =4;

The exception is the trip Boolean, which writes avnaumber without a state
Boolean involved (but trip Booleans included an &fRtate Booleans themselves, so
the structure is the same).

Note that SV (PROC) can change more than oncadrchhster. But using the state
Booleans (PROC3) in the conditional part assureshaethe last SV update is valid
and only a single transition is being executed.

25 Redundant representation cluster

This cluster is creating the state Booleans byrtgdtie state variable:
{In Pascal syntaxe} PROC3:=PROC = 3;

It is not allowed to write the state variable PRO@side the transition cluster nor
to write the state Booleans PRO@#tside this redundant representation cluster.

The state is now represented in two different wRysnarily by the state variable,
but for easy usage also as a set of disjunctive Bapleans. The programming order
of the clusters and the “single number propertythef SV” guarantees that. Also
important: the order of instructions within bothlisters is irrelevant! This is important
when proving the correctness of this approach. &g involved, no permutations of
instructions to be checked, just the proper clusteer taken into account.

Normally redundancy can cause problems. Which in&tion to believe? Is there
consistency of both representations? The clustderosolves that problem. The
representation of the actual state using an integgates the disjunctive property and
is very efficient for an operator interface to shitve status. The representation of the
state Booleans is very convenient in the use ofesgions. Every state Boolean can
carry the description of the state for documentagiorposes.

It is not a programming trick, but a means to ad: érwant to know for sure that
the mechanism i&agt, reliable and easy to document.

2.6 Timing cluster

This cluster is using the fresh state Booleans foy ¢be time parameters of the
actual state into three global variables. Afteruakiting the time parameters, the
elapsed time PROC_T and three comparisons can be.rgagh state diagram has
now three timing Booleans assigned. The “Alarm LGRROC_AL) Boolean is used
in the transition cluster to ignore the transitBoolean when a state is recently active.
The “Alarm High” (PROC_AH) is used for generatingtao long in step” alarm to
alert an operator. In some applications the asttiautputs could be suppressed on
this Boolean also. The “Emergency Shut Down” (PROMEBS used in the trip
cluster. Some states are time limited by thesa.tfigfinite waiting for some failing
process condition must be avoided. This ESD Bodiapements that elegantly.

See appendix E for the program code example.

2.7 Output cluster

This cluster is using the state Booleans (with ar) @Rexpressions to determine
the outputs. One can think that the output patiercompletely determined by the
value of the SV. In some cases an output can depemdultiple state variables from
parallel processes, but it is good practice togasan individual Output to a single

7 # stands for the state number. The state Boolganefixed by the SV name.

SV. Operators will notice the relation between éand the outputs and understand
that in important terms of predictability.

3 Implementation consequences

By repeating the program cycle, these clusterssitiiictions are executed over
and over again. Notice that by its very nature 8\ can follow only a single
transition. Multiple transitions can not be exeduite a single cycle. This corresponds
with the process itself, which is assumed not teabke to jump to any other state.
When a process is able to “jump”, the state diagmfiects that.

When two or more state diagrams are implementesl jritportant that the order of
clusters for each state diagram is correct. No comjses within a single state
diagram are allowed. The clusters of different staigables may be intertwined, but
normally it is good practice to order 1-1, 2-2, 3Bunctional clusters together). If the
state diagrams show some top-down ordering, | teqtogram the top diagrams first
and down diagrams later, because it is the naflmal from global decision to
commanding the output. The down diagram can usaliagram state Booleans as
transitions. Notice that the handshake from dowtopowill take an extra cycle.

This approach has some important features:

Decision speed: If the cluster order is correct, every diagrarasuthe latest inputs
to make a transition or not. All outputs are basedthe most recent states. The
outputs are therefore always based on the moshtresailable data. Every program
cycle all decisions are made. Not a single decitakas more than one cycle.

For comparison: No SFC implementations | know af gaarantee to “step” in a
single cycle due to a wrong (read single) repredimt of the status. See Problem 2.
For the reliability of a control it is very importato know this for a proven fact.

Because of the cluster order, it is impossibledeehmore than one transition in a
diagram in a single cycle. When using an OR ofesBxoleans to create an Output,
you are guaranteed that every cycle this OR withaim TRUE regardless of
transitions made when the collection of ORed states never left. Also a single shot
state (visited for only one cycle) can be guarahteebe seen TRUE in any cluster if
the diagram passes that state. (My equivalent awikmg that all “events” are
handled) Due to these properties elegant prograittowt additional memories or
signal prolonging timers to deal with multi cycledisions, can be implemented.

What if there would be the need to skip a stateiMy remark would be that is it
pointless to make more decisions than one in egcle because the outputs can not
be seen by the physical process until at the erileo€tycle. If the nature of physical
process asks for it, than an additional transitotjump” to another state is added of
course. No objections to create a full graph fatate diagram if that is considered
meaningful. (It shows bad design however: ever seeslevator skipping a floor?).

Handshaking between two state diagrams. Normally the decomposition in parallel
processes does not include the complete autonomgacii process. Consider an
elevator process. At a certain floor the elevasowaiting for someone to enter. This
“person process” was autonomous until pressingteomuo call the elevator. Both
processes are synchronized for the duration ofttaeel to another floor. The
corresponding state diagrams share the same obastict Both can have a “wait”
state for each other.

Easy to implement, because the state Boolean ofdismgram is a transition
Boolean for the other. When a mirror constructisnused, both diagrams can be
forced to wait for each other and the joined eft@m be guaranteed. When using the
timing as well, the elevator will not wait forevand assumes some faulty input if the
person walks away. It just opens and closes the after some time. Without another
request it could wait here, or on some other level.

3.1 Statetransition diagram semantics

Like in model checking, and in various other fieldesme form of state transition
diagrams is used. My state definition is slightlifedent. Before complaining about
it, realize that semantics are important. Georgeoffdk,6] showed the power of the
metaphors to convey knowledge. The terms | usebeahest understood by having
the implementation technique in mind and studyheggxample.

First of all a state is an abstract process staiglemented by a natural (integer)
number. The global variable holding this numberalbed the state variable (SV), but
for all used numbers within the same diagram a& ®atlean is used also (e.g. SV3,
meaning “SV was 3” in the first four clusters anéaning “SV is 3" after the fifth
cluster (redundant representation). Note that thmles shift of meaning in the fifth
cluster expresses the awareness of validity in)tilBg following the order rules
(clustering the categories) these Booleans areagtesd disjunctive in all but the
creating cluster (when SV on turn is unchanged)thBstate representations are
representing the state at all times outside thaimipulation clusters.

This double representation assures the importanpepyp of making no or a
complete single transition every program cycle!

And when using or reading, the state Booleans anwvemient and easy in any
documentatioh Without some double representation, it can bevemo that
implementation in a serial list of instructiondngpossible or imperfect (like multiple
transitions/cycle or multiple cycles/decision).

The naming convention for the state variable (PR@@) a single state Boolean
(PROC3) helps reading the diagrams. Don't undenedé the importance of the
proper documentation of the state Booleans. It lidiged to achieve reliable
programming.

Well formed diagrams. A complete diagram has two or more states, coedect
with directed arrows, the transitions. Each traosifs effectively a Boolean variable,

8 Documenting the State Booleans is documentinggdii \8V numbers.

not an expression. If an expression is needed, &ookan expression can be made
in a preceding cluster. In my drawing tool, HCADwihe transition Booleans can be
used normal or inverted. When the timing is used,ahe elapsed time for the actual
state can be added using an AND, giving four wdyssimg a transition.

The diagram must be well formed: each state museaehable from every other
state (multiple steps allowed), assuming that tfamsitions are cooperative. A
designer will look into that and omit silly statessadd transitions. When dynamically
states are unreachable due to false transitiohsoks like a dead end, but using the
trip transitions it is not. Although I dislike ind tend to forbid it, it is possible to use
a transition from no state to activate a state. @lpi these transitions are used to
force an initial state for the very first cycle thie program. Or a single shot operator
command to reset some diagram. In my view the cra#tthe diagram using these
deus ex machina-transitions is lazy and undermining the correcines

3.2 Dancing connection

The primary goal of my process control is keepirg ¢bnnection of the physical
state and its representation. Knowing that inptesfaulty or delayed, it is impossible
to have a 100% strict connection. But is that nemg® No. When a diagram follows
the physical process to a certain extend, it isdgewough. When exceptions arise,
some special transitions can be used for startipgth in the diagram for exception
handling. A flexible, almost dancing approach,lisv@ need.

The connection between real world and state diadpasrd cases:

1. Actual: both states correspond. Ideal situation.

2. Future diagram shows future state. This is normal whenesontput is
changed and the process needs time to react. Lika@rmgpa valve.

3. Past: diagram shows past state. Again very normal whenesdelayed
input is telling us the status. The elevator reach#sor before the input
used is telling us so.

4. Wrong: the diagram is disconnected. This is fun. If thapens and the
diagram is well designed, it is a matter of timesyachronize again. With
“well designed” | mean “self repairing” by usingetladditional timing or
alternate inputs. At first the alarm timing could bsed for an alternate
path (normal Input was faulty). At last the triprisitions are used to enter
a safe state, forcing the physical process to sleep

5. Absent: SV contains a number without an associated statdeBo. All
state Booleans are false, so no transitions canb®enade. This absent
state is forced by me when starting the commissgpmf the program.
Like entering state 99 for the elevator positionl &dsociated outputs
should be in a safe position now (hibernate stéftehe physical process
was acting, it should come to a standstill. Nowkl@d the real elevator
position. Is it on the first floor, correspondingtiw*SV=1"? Just enter the
proper number and your program is picking up atcthreect point.

The “wrong” and “absent” cases need not to be inyat&d. This is very important
for understanding my philosophy. In fact | claimaththe representation of the
physical process is consistent when all diagrarasiell formed. It is much easier to
prove that this representation is correct in itsedn dealing with nasty properties
from the real physical process. When accepting thatphysical process does not
exist in terms of polluting the representation witidesired events or properties, the
“wrong” case is non existing. This is a very plegsaroduct of assuming the poor
quality of the inputs. (And Plato, see epilogue.jsTik not the only consequence of
turning the world upside down. My state diagranmgagt ignore all inputs unless a
transition expression is using it for leaving tlotual state.

When modeling a system, one must be careful. Tate space is easily exploding
to enormous proportions. A lot to investigate antbrtunately: it all must be right.

John Grey [7] showed how utopia-thinking has causesian disasters. Realistic
thinking is better.

System philosophy: The real time systems | programmed were all basethe
following principle: Start with a sleeping systeihis state with minimal action can
be proven to be stable, stationary and coreltirepresenting state diagrams are in
the initial state. All associated outputs are affuatever is the safest conditiorhe
system is “proven correct”. (At least is shoulddasy to prove)

Wait for the “wake up call”. Some Input or operatmmmand will start some
activity: “Open one eye and check the daylight”. Theake up call” transition
includes the lack of error (by definition or assuimp, because it is all you can know
about the physical process), at least at that mbmehat state.

Now | know for sure that the program is a littleiae and still correct because of
the (assumed) error free status. It remains inravgn correct” state. (If still dark or
ill, don’t get out of bed.) This awaking continuestil we reach the utmost alert and
active states. When some unexpected inputs cowldecaome trouble, fall asleep
again. (If going to your work and the train is gptrg your bike. If the bike is stolen,
go back to your bed and retry tomorrow)

This “full induction” scheme is proven correct i aisited states. All we need to
know is the correctness of the transitions whepitg and the willingness to fall
asleep when the inputs are failing or show strdoeavior.

High availability: It is good practice to ignore a single fault. lexample in the
GLT project this strategy was used. Assuming that all inputs eorrect, the
availability would be 90%. Accepting a single eriocreased that number to 99.8%.
So my ‘“return to sleep” on unexpected signals wonlike a very safe system, but
only 90% available. Implementing some alternatizetes in the diagrams or using
parallel transitions to cope with single errors Vdobe still safe enough and perform
much better. This is a good way of dealing with fiauhformation and easy to
incorporate within the state transition diagrams.

A strict mathematical analysis using all availabli®rmation at all moments could
describe a system which is optimal but shows a poailability.

Ignoring irrelevant data is the key to safe, reliable and high availabletias.

9 GLT=Groningen Long Term. Dutch 2 billion EUR prdjgcolonging gas field usage.

3.3 Example implementation

Appendix D shows an example of the state diagrarplementation using my
HCADwin tool. All implementation rules are stricthbeyed.

When using a graphical drawing tool for a stategiim, it is impossible to
generate a cluster of instructions for a state ®frahd follow my implementation
rules. Every HCADwin state symbol generates two skisstructions. The first set is
placed in the transition cluster, the second setdaayed” to be placed in the
redundant representation cluster. In a graphicalr@mment the “page” is a natural
entity. Therefore the “page end” is the proper pmsifor the delayed instructions,
unless to be forced earlier by a “Flush” symboktable a single page holding both
clusters (and the timing cluster as well). See €ig.

Now | can guarantee the single cycle decision. Wiaele generation is based on a
cluster of instructions for each symbol, which sy normal, then my important
principle for predictability is violated.

4 Epilogue

Plato’sidea of a circle is found in realistic circles. But eatistic circle is only
visible when drawn with a certain thickness. Therehaf theidea is the pureness
and therefore flawlessness of the concept. The siagams are representing the
physical process with this pureness and flawlessnes

The obliged clustering of instructions of the pragrand the double representation
are important for the guaranteed single cycle dmtssand the 100% reliable use of
the states in the rest of the program. By its vexture this kind of program is easy to
develop and even easier to commission. The staridaud on the actual state makes
it possible to change a transition or add some staglter the output pattern without
any interference with other states. What you seéhit you get, transparently.

Using the timing and trips to restore synchronamatis the “self repairing”
property of my control. Like the weak chemical baidhe DNA molecule makes it
easy to destroy. But being the most likely conmectt the normal temperature, it
restores itself in the old configuration. This wee&s in combination with most
probable configuration, made the DNA structure teias millions of years.

The tendency to return to the initial or sleep sedems to contradict a system
designed to be available at all times. In my exgraré the utmost alert state will be
manifest almost all of the time. And if some “wréredate occurs due to dirt, faulty
inputs or old age, my system resumes much fasgste®s designed to keep working
are magnifying the problems and working a littlader, but causing more damage
and therefore increasing the down time.

Summary: The developments in software engineering are tesame for the
modern DCS. The marketing techniques are shouting desy it is to connect the
standard components and “fill in the dots”. In eveelease of the standard
components, the amount of nice looking functiortséases. Therefore the amount of

Boolean expressions connected to the parametgrewdang and the transparency is
decreasing.

My tobacco transport program was based on my appraad was running for 17
years without any alteration. My first program farTeflon factory survived the
migration to new hardware and is still running ftie last 25 years. The state
diagrams were completely captured in data to enabbipe switching. It was
implemented on a higher abstraction level. Downilogihew data before a Teflon
batch, altered everything except my cluster order the data interpretation program.
The key issue is how the physical process is reptedén a relaxed manner.

Acknowledgments. | would like to thank Johan Schmaal for his cdnmition of
integrating the First Failure within the state d@ygs. Fig. 12 was created with his
tool. And | would like to thank Rom Langerak for encaging me to write this paper
from the “caves of industry”.

5 References

=

McCluskey, E.J.: Minimization of Boolean functipn¥he Bell System Technical
Journal,1956
2. Quine, W.V.: A Way to Simplify Truth Function$he American Mathematical Monthly
Vol. 62, Nr. 9, 1955
3. Brown, S., Laws of form, London, Allen & Unwin989
4. Alur, R.: Timed automata NATO-ASI 1998 Summer &thon Verification of Digital and
Hybrid Systems. A revised and shorter version apgpeallth International Conference on
Computer-Aided Verification, LNCS 1633, pp. 8-22, i8ger-Verlag, 1999.
5. Lakoff, G., Johnson, M.: Metaphores we live byiversity of Chicago Press 2003
. Lakoff G., Nunez, R.: Where mathematics comenfr®asic Books 2000: ISBN: 0-465-
03771-2
. Grey, J.: Black Mass, ISBN 0-713-99915-2; Allem&&007
. Wirth, N: The Programming Language Pascal. 35%6% Informatica, Volume 1, 1971.
. Knuth, D.: Sorting and Searching; Addison-Wed$begfessional 1998: ISBN 0-201-89685-0
0. Henzinger, T.A., Wong-Toi, H.: Using HYTECH tgr8hesize Control Parameters for a
Steam Boiler In Formal Methods for Industrial Applions: Specifying and Programming
the Steam Boiler Control, Lecture Notes in Computéer®e 1165, Springer-Verlag, 1996,
pp. 265-282.
11. Stephanopuolos, G.: Chemical Process Controllnfnduction to Theory and Practice;
ISBN: 0-13-128596-3; Prentice-Hall, 1984; Page 634.

(@]

= © 00~

Appendix A: Explanation of Fig 1.

The large rectangle stands for a standard buildlogkb(a “typical”) containing
some logic instructions, memories and timers. Thelkbis to be connected to a
digital output of the PLC. The figure describes iralrdetail how this block is
dealing with the manual commands from the oper@ha MAN connections on both
CLOSE and OPEN sides) or from some automatic procddlu@ connections). The
MAN + AUT connections in the middle are (re)settmgtatus memory for selecting
which captain (MAN or AUT) on the ship must be obdy&he PERM connections
are close and open permissive conditions. A permaissondition prevents the
operator of giving a wrong command by checking @pdrtant process status. A
permissive is used to determine the proper corfitexd transition, but is not flawless
due to the use of Inputs.

When the process enters a state that the valve bmusfiosed (or opened) to
prevent serious damage, the protection command®{PRre used. These protection
commands will overrule all operator and automadimmands.

Notice that a programmer must invent 10 Booleanresgions to fulfill all
parameters needed for this standard block. Andishéwen a simple example! When
analyzing these parameter expressions, you willtseethe upper right OR is the
desired valve status coming from some normal coldgic (details are left out here).
The additional AND is an extra permissive for théoaatic OPEN command. The
other OR gives some refinement for the close contm@in inverted connection is
indicated by a small circle.) All lines with an aw on the left side are connected to
some input or other (complex) Boolean expressidre DPEN result underneath is
connected to the PLC output.

Appendix B: Clustering details

For the instructions examples | use the PascalldByuage. It is an elegant
language. The PLC is executing a serial list of utdions. Let us investigate what
that means.

First of all is the order of instructions always® tekame. And all instructions are
executed at every cycle. The control logic is immated by this repeated list of
instructions. Consider a small program:

{Program 1} A: =not A

This is an oscillator when repeatedly executed. Téguency is directly related to
the cycle time. A complete period takes two cydsw consider:

{Program 2} B:=A; A =not B;
It is the same program, but it takes two instruttioAnd what about:
{Program 3} A =not B; B:=A

I changed the order of instructions, but becaus¢hefcyclic execution of the
instructions, the result is the same. Is it really?

A B
(O
The above figure illustrates that for these tworingtons the relative order is
insignificant: A is followed by B in both cases dioethe repetition of all instructions.
The instructions are put close togetthey are clustered. Observe how the global
variables A and B are changing solely within thestér. Outside the cluster you will
see a difference between program 2 and 3. The dltlee expressiod and B
differs. Program 2: always False, Program 3: alwaye.
This is the source of many errors or unreliableltes¥ou should be aware of the

order of instructions and the relative positionhivitthe cycle when you are using the
stored variables. Another trivial example:

{Program 4} C.=A; B:=C, A =not B;
Is functional equivalent to program 1. But now heaally change the order into:
{Program 5} B:=C; C. =A; A =not B;

And the behavior is changed at last. The oscillaftieguency has changed. It takes
4 cycles for a complete period. Using a memoryetiayl (or better: postpone) can be
useful. In your Boolean expression however it is inomediately clear that the used
variables are recent or ancient history. When tlderoof instructions is neglected or
forgotten, some unwanted memory is introduced. rEselt of clustered instructions
depends on the order of the individual instructions

When constructing some “subroutines” for convenggnthe same argument is
valid again on a higher level: the result of sorustered subroutines depends on the
execution order of the individual subroutines.

Notice how programs 1 up to 4 are oscillating im tfighest frequency possible and
how program 5 reacts slower just because of therarflinstructions. When writing
control logic, you must be aware that the ordemsfructions will be able to slow
down the maximum speed of decision taking.

In this paper | propose an implementation technitpased on clustering of
instructions in a specific order to be able to guse this maximum speed. When
proving the correctness of a control program, myragch will prevent the
combinatorial explosion of investigating all possipermutations. When dealing with
separate objects there is too much to investigate.

Instruction order and clustering.

Appendix C: HCADwin tool

HCADwin is written in Delphi (Pascal developing @mwnment) solely by the
author. HCADwin is a drawing tool for Functional i@l Diagrams. Normally IEC
1131-3 symbols are used, but the symbol library marconfigured or modified for
each individual project. Every symbol contains agunfable Pascal statements. These
statements are used when a complete project islated into a Pascal library unit (to
create a DLI). This enables HCADwin to test simulate the logie control with
high performance. The (fixed) cycle time is 100 isdtonds, corresponding with the
average cycle time. (PLC: 10 thru 200 milliseco@€S: 250 thru 500 milliseconds)

A built in simulation language, HS1, can be used to model the physical process.
This HSL is using equations to express the lawsatine. When integration is needed
some differential equations are added.

The code generation is not limited to Pascal. Siredt Text to program a PLC
directly, or Java for a standalone application, lsartonfigured.

HCADwin was used to implement a huge real timentregj simulator for a coal
fired boiler connected to a steam generator proguéB80 MW electrical with 260
Bar steam pressure. The simulator contains 110@esahnd pumps and 80 PI(D)
controllers. The HSL was designed to solve theetlplease problem of supercritical
water. On a normal laptop the performance of 1% tene is possible. In total
206.000 variables were handled for the controlda@gid physical models.

Modeling tool like MATLAB or Simulink have poor capiiites for the logic
control. This is the normal characteristic for siatirlg tools. When the logic control
can be simulated, like many soft PLC programs (mqstrt of the developing tools
belonging to a certain PLC brand) the field simolatis absent or poor. HCADwin is
unigue in combining both.

For state transition diagrams only two symbols ianplemented. The “State”
symbol holds the unique State Boolean (A numbefixa@ by the State Variable
name) and three time parameters. The “T_Adm” synftmitls the same SV and
performs all timing and testing against the acstaie time parameters. By “delaying”
part of the Pascal instructions associated witH &tate” symbol, my implementation
rules for clustering the instructions are obeyedth@it this “delaying” the decision
speed of a state transition diagram would takeipieltycles.

Without David Knuth [9] the performance of the iilbulatabase engines and
scripting languages would suffer. His balanced fyirteee is frequently used. And |
know how to sort without any comparison.

10 DLL= Dynamic Linked Library. A DLL contains exealitle code for Windows.
1 HSL=HCADwin Simulation Language

Appendix D: Example implementation

To illustrate the process control using my stategidiens, a small process is
selected. The physical process is a storage vegbelvater. The vessel buffers some
water to enable the on-off pump to feed anothecgss. Fig. 4 shows a schematic of
the physical process:

VN
PI D

VA VR
Lev:el AT
STORAGE
®

D
L/ PA Pressure

VD

Fig. 4. Hybrid control example. Block valve VA enables the water supply. ControveaV/R
is used to control the water level at 75%. Thelle&weneasured by input L. Block valve VD is
used to drain the vessel. The pressure is measyradput P. Water consumption by the
processes downstream will drop the pressure. Ahligin/pressure will start/stop the pump.

Analyze this process. How many parallel processegal see? | count 2 parallel
processes. The main process is the storage vesgeh kingle entity which can be
empty, full, draining, controlling or in any othdisjunctive state. The valves are used
to influence the physical state. The second proisessganizing and controlling the
pump function.

When using 5 parallel pumps, it is on a high lejst a single pump with 6
operating levels (0, 1, 2, 3, 4, 5 pumps runniRigase keep it that simple and add an
organizing diagram. Each pump will get its own dé&g. When reading an article
about a steam boiler and HYTECH[10], | noticed a cpss representation
introducing the number of running pumps as physitates (inducing combinatorial
problems by choice and mixing physical and virstates).

| return to the main process, the vessel. How dstag analyzing it? Assume the
system is shut down. No activity. What about theset in this state? It could be at
any level, but | recognize the “Sleep” state: &iick valves are closed and the control
valve could be in any position. The second statkdas'Drain” state. For maintenance
it is desirable to empty the vessel for cleaning.valves closed, except VD. We
enter this state by an operator command: DRAIN_CMbbw long do we need?
Maybe infinite, for maintenance cannot be timedhwat fixed parameter. | need a
DRAIN_STOP command from the operator to returnlées. The operator initiates
the system to work by a VESSEL _START command and ssearae that everything
will now operate automatically until a VESSEL _STO#henand orders us to sleep
again. The vessel should hold about 75% level &raip normally. But it could be
empty (L<5) or full (L>98). When full, the VA and VRust be closed. When empty,
the VA must be opened and after, L>10, the normatatipn may continue.

The process can be implemented using state diagastisobeying the rules for
clustering the instructions.

D.1VESSEL clusters

During and after analyzing the process the statgrdims are created. The resulting
implementation is presented here in the propetelusder.

The transition logic is shown in Figure 5. The VESSE]L_B, R (from Fig. 12)
are used for operator commands. The connecting agly(fflank”) detects a False to
True change and is True for only a single cycle. IRACMD is therefore True on
the rise of VESSEL_R. Using single shot commands ¢goad practice. When a
failing Input is used for a command, it can notsbely fire continuous commands.

Read these schematics from left (named inputddaight (named outputs). The
combinatorial logic is in the middle. Thin lines catt Boolean signals, thick lines
transport integer values (indicated with “I"), arat values (indicated with “R”, e.g.
next to LEVEL).

VESSEL_R
VESSEL_A
VESSEL_B

LEVEL
900

E]

DRAIN_CMD

[VESSEL_START
[VESSEL_STOP

VL8

Level > 98%

LVL10

Level > 10%

VL5

Level < 5%

]

El

N v
o e o
5 3

Fig. 5. (100) VESSEL Transitions

The “(100)" above indicates the HCADwin page numfdére drawn symbols are
translated into a serial list of instructions feliog some simple rules:
1. Every symbol translates to one or more program lines
2. The order is: Page by page from low to high pagebmrm
3. Each symbol has an “execution point” on the uppiéctaner.
4. Symbols are ordered from the left to the right (&mg to bottom if left
coordinates are equal)

A fundamental exception is made for “State” symkfig. 6.): These instructions
are divided into a first and “delayed” part. Thesfipart is using the state and
transition Booleans to write a new state variallangition cluster). The “delayed”
part is inserted at the end of the page (or dfterElush” symbol just on the right of
the last “State” symbol) and creates the statedazod depending on the actual state
number (redundant representation cluster). The bstate Boolean is used to copy
the parameters to global variables for the timipgpisol. Now HCADwin fulfills my
rules of clustering the instructions.

Important remark: Implementations with all instructions clustered symbol
boundaries, can never obey my clustering ruleswitidalways need at least two
cycles for the decision taking in case of upstreanmected symbols.

V98 (TLC

e 100

=5
0
=0

LVL10
Page 100

VESSEL T=5 VESSEL
4 Enpty TH=0 pN Time N
TA=0

State Diagram Flush Timng

Fig. 6 (200) VESSEL State diagram

The HCADwin representation of a state diagram issshim Fig. 6. The topology
of the diagram is loosely connected with the plalsprocess. (vertical ordering of
“Full”, “Active” and “Empty”). Notice the three timparameters for each state. And
that “(TL)” is added to the transitions which mustitwebr the indicated TL=5
seconds (TL from origin state) to be activated. diotalso the inverted transition
LVL98 from VESSEL3 to VESSEL2. All transitions show tbeation page number
for easy referencing. (All transition Booleans ®fbund on page 100 = Fig. 5.)

And look at the rectangle on the bottom right. #hing for the VESSEL state
diagram is performed here. Because all states igpendtive, a single time-variable
(VESSEL_T) is used for the whole diagram. This g@nghing symbol shares the SV
name with all states and is positioned after (#ortght) the last state. This “T_Adm”
symbol contains the complete timing cluster.

- =5.0
fr] b
0
Al

7 VESSEL

5.0
Al
7 VESSEL >0
Empty
I

0 VESSEL
sl eep

)

T VESSEL
Drain

3 VESSEL
Ful |

[EVEL_CTRL

LEVEL =20
VR=100 1
g o o) @

R

[PI D

Fig. 7. (300) VESSEL Associated outputs

The VESSEL state diagram is completed with the comdigit of Fig. 7. Now an
OR (“>0" symbols) of the relevant states is progmed to establish the output

pattern. Notice on the right side three symbol e names of the valves, VD, VA
and VR. The attached input signal is effectivelg ®Butput of the PLC. Within

HCADwin this symbol is used to simulate such a galx parameter (t= 5.0) is used
to indicate the travel time from closed to open. Ghubal, implied, variable VDPOS
holds the position of the VD valve represented IReal number from 0.0 thru 1.0.

The VD and VA valve are using two inputs, one norarad one inverted. Ignore
that now, because it is only useful when a valve loald its position if both input
parameters are false. A normal block valve is ogedlesed or traveling.

Notice that reading the VESSELL1 is different (a thickectangle is used) from
reading the other VESSEL# state Booleans. VD is dérsulgif VESSEL1 And
(VESSEL_T<VESSEL_TH) is True. The drain state may takimiteftime, but the
corresponding output is limited to the first TH=38conds. For this process that was
not necessary, but it shows the elegance of theadet

The LEVEL_CTRL symbol is a simple PID algorithm, basedtlte velocity form
(Stephanopuolos [11]). Observe how the output isf BRD controller is manipulated
by a “choose”™symbol. The Boolean on top pushestriech down when True so the
0.0 is used for the desired valve VR position. Tforim the PID controller, the
ultimate output is returned on the TR (Tracking) paeter. The next cycle this PID
symbol tries to increment or decrement this vallgng this simple method prevents
integral windup and is always smooth if needed.iAdhe VR valve symbol is for
simulation.

The three Fig. 5, 6 and 7, are the complete prodoartihe VESSEL state diagram!
Each symbol generates some lines of Pascal (seél@ladwin appendix C).

Hybrid control: Note that the state diagram is used to close tRevdlve by
manipulating the proper output. The PID controliemains active, but is overruled
(and informed through TR). When the diagram has ewxdrio force VR, the normal
PID controller will take over bumpless without igtal windup (due to lacking
integrator as a consequence of the velocity foma) starts controlling. The hybrid
control comes very natural in conjunction with ttate diagram.

D.2 PUMPA clusters

The next part of the program is the diagram forphep process, see Fig. 8 and 9.
| choose input P for the pressure (simplified mdelthis example) to decide the
increase or decrease of the amount of water touneppd out of the vessel to all
consumers. If water is consumed, the pressure avilp. The PID controller,
PRESS_CTRL, is “controlling” this pressure and triesopen some virtual valve.
When the output signal of this PID controller reexlY5% (0.75) it is a request to
start the pump. (<0.25 requests the pump to shd@) you will understand the logic
of Fig. 8 to create the PUMPA_ON and PUMPA_OFF4itions.

PRESS_CTRL

PRESSURE PUMPA_ON
PV R=25 Aut omafi ¢
20.0 |4SP 'I:%
WED)
PUMPA_OFF
Aut omafi ¢
PUMPA_A =1 PUMPA_START
CPR PA'start 200 l&l Qper at or
PUMPA_B PUMPA_STOP
CPR PA'stop 200 @ per at o7

Fig. 8. (101) PUMPA Transition logic

A pump could be damaged if no water is availaldewbken the level is lower than
5% (LVL5) the PUMPA_OFF is forced. The pump is nobriing well when it
pumps out of an empty vessel, so LVL10 is used mjwwtion with the start pump
demand. To give the operator an opportunity torfate with the pump process, he is
given some commands also. Note that he is allowestart the pump above 5%
level.

PO
0 Stopped THEO
TA= 0 PUVPA_START (TL)

PAXBO2
PunpA st opped PUVPA_START
ago 20 [-oper ator
Page 101
PUVPA =0 POVPA =2 PUVPA
3 Stopping THe 3 9 Tripped TH= 0 PN Time N
TA=5 TA= 0
PUVPA STCP (TL) PUMPA_ESD
Cperator PunpA tri pped
PvPA BFE P Page 200 PAXBOL
Aut onat i ¢ PUVPA =2 PunpA running
Page 101 > Running THE O jea— P30

TA= 0

Fig. 9. (200) PUMPA State diagram

Fig. 9 is typically for on/off equipment. The twtates, PUMPAO en PUMPA2,
could take infinite time. (TH=0 and TA=0 indicate th relevant duration can be
tested). Because a pump cannot be started withomie selapsed time, the
PUMP1=Starting state shows the representation af pysical phenomena. The
pump is assumed to start within 2 seconds, soamadignal could be given after 3
seconds. When it takes 5 seconds, something wally remong. Note the
PUMPA_ESD transition, coming from nowhere (sma#di square) and forcing the
PUMPAOQ trip state.

A realistic pump normally has some extra inputshow malfunction, such as a
thermal trip signal when the electro motor is oeatied. That would be a splendid
candidate to include in the trip transition. The ttime Boolean (PUMPA_ESD) is
made in the general (rectangle) timing symbol anripht.

By convention the trip state is left after a deldie operator command. | choose
the PUMPA_START to make the pump available again.

The PAXB0O1 and PAXBO02 transitions are produced by gump simulation
symbol PA in Fig. 10. Normally these “Pump is rumgii (XBO1) and “Pump is
stopped” (XB02) signals are returned inputs from pinysical pump. The simulation
symbol uses a PAPOS Real variable from 0.0 thru(dddnparable with a valve
position) to indicate how fast the pump is runnivigjle starting and stopping.

The “t = 2.0” parameter indicates that it will takeseconds to start the pump. The
XBO01 and XB02 signals are both false when the pistraveling.

1 PUMPA

Starting

e— RI
2 PUMPA >0

Running 2

Fig. 10. (301) PUMPA Output

Fig. 10 shows the logic for the output for PA, jassimple OR (“>0") with the
states PUMPAL and PUMPAZ2,

Manual/Auto navigation: Make a special note of the parallel transitiorsrfrthe
operator, PUMPA_START and PUMPA_STOP commands (BigT®is enables the
operator to manipulate and control as he likes. Wdtepping a pump, the process
will react on it by lowering the pressure, maybe thason to start another (parallel,
but not in this example) pump automatically. ThelRrm 1 functionality is captured
here more elegantly and transparently!

No Manual/Auto needed and always in sync with tlagm.

D.3 Field simulation

It is good practice to test the control logic. Wal/s do that in an incremental
fashion. When all clusters of a state diagram iisHed and the outputs are sent to
the simulated valves, these valve positions canseel to simulate some response of
the physical process in order to test the PID adletss or the response on switching
values on the analogue inputs.

VAPOS

VRPOS

VDPOS @
PAPOS
N PRESSURE
[20- (1+S1 N(0. 02* TA)) 0. 5+&U& R

Fig. 11. (900) Simple field simulation for LEVEInd PRESSURE

Using HCADwin to test the control logic, the abdiedd simulation is added. The
goal is not to represent the exact behavior, bun#ke a plausible response. The
LEVEL is incremented (upper “+” symbol) by the diffecenof the mass through VA

and VR? and the mass loss by draining (VD) or by pumpifige delay symbol is
used to prevent algebraic problems when testing ddlitrollers (and modeling the
inertia of the physical process). The MIN and MAXe arsed to clamp the level
between 0 and 100%. The pressure is some fantaswlif using the SIN of the
elapsed simulation time (T") to simulate a periccbasumer behavior. The “&U&”
(symbolic input parameter) in this expression egjtizd connected PAPOS.

D.4 Operator visualization

On the operator screen is a symbolic picture (filg 4) of the process available.
When he double clicks in this picture he expectshihittons of Fig. 12:

VESSEL PUMPA
St at e=0 State=0

Sl eep St opped
Stop = DRAIN_STCP + VESSEL_STCP

Fig. 12. (200) Operator faceplates and State diagiaualization

The VESSEL_A, VESSEL_B and VESSEL_R signals are connectit thuttons
in the left operator faceplate from Fig. 12. Theaeeplate symbols are normally
placed on the same HCADwin page as the correspgratitie diagrams.

The state diagram is identical to Fig. 9, but itvehaecent visited states as a
colored trace. The green “0” state is the curreatestith an elapsed time of 12
seconds (Duration). Previously state “3” was trae dnly 2 seconds (Prev.T) and
before that state “2” took 62 seconds (Pre-prewlgtching colors are used. If the
trip state (“9") would be active, it is shown irdreo alert the operator.

This is the important function of the timing symimext to the state diagrams. The
operator can not only see in a glance what theeptistate is (0: pumpA is off), but
also were it came from and how long ago.

In particular when something fails this informatisrvery revealing. To visualize a
trace of three states in color is nice when agtiie is activated. The elapsed times
and previous states are telling the story in atralits

12 Multiplying VAPOS and VRPOS does not leave thet@r@n 1.0 range. Serial placed valves
can be seen as a single valve. Using mass is daihdor there is a mass preservation law.
Using volumes is asking for non linear behavior whige medium enters another phase.

Appendix E: Timing implementation

An important addition to the state diagrams is midthe timing cluster. Every
state number can be associated with three timetaaiss By adding a single elapsed
time variable PROC_T to each named diagram, we oastrct an elegant timing
program:

If PROC1 Then Begin {Also for PROC2, PROC3, etc}
PROC_TL: =PROC1TL; PROC_TH: =PROC1TH, PROC_TA: =PRCCLTA
End; {Copy tim ng paraneters}

I f PROC _V<>PROC Then Begin {detect transition}
PROC_PP: =PROC_P; PROC_P: =PROC_V; PROC_PPT: =PROC_PT,;
PROC_PT: =PROC_T; PROC_T: =0.0; End;

PROC _V: =PROC; PROC _T: =PROC _T+DT; {Save SV and i ncrenent
timer with programcycle tine DT}

PROC L: =PROC T>PROC TL; {create 3 tim ng Bool eans}
PROC_H:. =(PROC_T>PROC_TH) And (PROC_TH>0.0);
PROC_ESD: =(PROC_T>PROC_TA) And (PROC_TA>0.0);

The above Pascal statements show how easy itiispieinent a general timing for
each diagram. Using PROC L in a transition expresgioconjunction with a state
having a positive minimum time (PROCLTL) assigneditfois very convenient.
PROC_H becomes true if the elapsed time in theahstate is alarmingly long.

It could be used in the output cluster not to eizerg certain Output. Typically
done when a vessel is being filled and some “firilfication was expected but not
coming. It is wise to close the fill valve. The PRCESD is used as a trip condition.
A state took much too long and an emergency medasaseto be performed, like
entering a trip state.

Note that by assigning a zero to the time paramésefunction is omitted. The
copies of previous state numbers and elapsed tingessed for visualization only.

When these timing Booleans are used with some, $kél state diagram starts to
become “self repairing”. If some Input fails (oethrocess acts funny), this abnormal
behavior is captured by some other Input AND PROQugihg a normal or a deviant
route through the diagram).

